Kondensatpumpe für die Solarenenergiegewinnung

Problemloser Kondensatwassertransport durch Ihren Wärmekreislauf

Kondensatpumpen (CEP) extrahieren das Kondensatwasser aus dem Kondensator und pumpen es durch das Kondensatreinigungssystem und die LP-Heizer zum Entgasungsspeisewassertank. Als Kondensatpumpen werden vertikale Spaltrohrpumpen eingesetzt, um eine künstliche Haltedruckhöhe (NPSHA) zu schaffen. In kleinen Kraftwerken können auch horizontale Pumpen mit axialem Eintritt verwendet werden.

Sulzer bietet die folgenden einstufigen Pumpen als Umwälzpumpen für Heliostat-Zentralturm-Kraftwerke mit direkter Dampferzeugung an:
SJD (CEP) ZE/ZF
Förderleistung
Bis zu 4.900 m3/h / 21.560 US gpm Bis zu 2.600 m3/h / 11.440 US gpm
Förderhöhe Bis zu 400 m / 1.300 ft Bis zu 300 m / 1.000 ft
Druck
Bis zu 94 bar / 1.360 psi Bis zu 60 bar / 870 psi
Temperatur Bis zu 100 °C / 212 °F Bis zu 425 °C / 800 °F

Produkte

  • SJD (CEP) vertikale mehrstufige Topfpumpe für die Kondensatextraktion
    SJD-(CEP-)Pumpen werden dort eingesetzt, wo ein geringer NPSH aufgrund von Systembeschränkungen oder Flüssigkeiten, die nahe ihrem Dampfdruck gepumpt werden müssen, vorhanden sind. Die NPSH-Anforderungen der Pumpe können auf einfache Art und Weise angepasst werden, indem die Länge der Pumpe und des Topfes verändert wird. Dadurch wird auch der Platzbedarf minimiert.

  • ZE/ZF-Pumpenserie mit axialem Eintritt
    Die ZE/ZF-Pumpen sind ideal für schwierige industrielle Anwendungen, die saubere, kalte oder heisse Flüssigkeiten, inkl. Kohlenwasserstoffe, und leichte Chemikalien, fördern müssen.

Verfahren und Anwendungen

Heliostat-Zentralturm-Kraftwerk mit direkter Dampferzeugung (DSG)

Heliostat-Zentralturm-Kraftwerk mit direkter Dampferzeugung (DSG)

Heliostat-Zentralturm-Kraftwerke sind die vielversprechendste Option für die Zukunft, weil sie weniger Platz benötigen und eine höhere Effizienz erreichen als Parabolrinnen-Kraftwerke. Sie ermöglichen eine Erzeugung von gesättigtem Dampf mit niedriger Durchflussrate oder überhitztem Dampf mit hoher Durchflussrate.

Heliostat-Zentralturm-Kraftwerke erzeugen elektrische Energie aus Sonnenlicht, indem sie konzentrierte Sonnenstrahlung auf einen auf einem Turm montierten Wärmeaustauscher (Empfänger) fokussieren. Das System nutzt Tausende Spiegel zur Sonnennachführung (Heliostaten genannt), um eintreffendes Sonnenlicht auf den Empfänger zu leiten. In diesem Fall wird als primäre Wärmeträgerflüssigkeit (HTF) Wasser verwendet, das direkt in Dampf umgewandelt wird.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Heliostat-Zentralturm-Kraftwerk mit Salzschmelze und Wärmespeicher

Heliostat-Zentralturm-Kraftwerk mit Salzschmelze und Wärmespeicher

Heliostat-Zentralturm-Kraftwerke sind die vielversprechendste Option für die Zukunft, weil sie weniger Platz benötigen und eine höhere Effizienz erreichen als Parabolrinnen-Kraftwerke. Sie ermöglichen eine Erzeugung von überhitztem Dampf mit hoher Durchflussrate.

Bei dieser Variante wird als primäre Wärmeträgerflüssigkeit (HTF) kalte Salzschmelze bei etwa 295 ºC eingesetzt, die durch den auf dem Turm montierten Wärmetauscher (Empfänger) geleitet wird. Dort wird die Salzschmelze auf ungefähr 565°C erhitzt. Dies ermöglicht es, überhitzten oder sogar überkritischen Dampf mit hohem Durchfluss zu erzeugen. Ein Teil der heissen Salzschmelze wird in einem Heiss-Salzschmelze-Tank gespeichert und kann nach Sonnenuntergang wieder abgegeben werden. Damit lässt sich die Betriebszeit der CSP-Anlage um etwa 6-7 Stunden verlängern.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Integriertes Kombisolarkraftwerk (ISCC)

Integriertes Kombisolarkraftwerk (ISCC)

Hybrid zwischen Kraftwerk mit fossilen Brennstoffen (z. B. gasbefeuertes Kombikraftwerk) und CSP-Kraftwerk. Das Solarfeld (entweder Parabolrinnen, lineare Fresnel-Spiegelkollektoren oder Heliostat-Zentralturm) liefert bei hoher Sonneneinstrahlung zusätzlichen Dampf für die Hauptdampfturbine. Diese Konfiguration wird typischerweise zur Leistungssteigerung beliebiger Kraftwerke mit fossilen Brennstoffen verwendet.

In einem Kombikraftwerk werden Hochtemperatur-Abgase von der Turbine durch einen Abhitzedampferzeuger geleitet, aus dem Hochdruckdampf in eine Dampfturbine gelangt. In ISCC-Installationen wird zusätzliche Wärmeenergie aus dem solaren Dampferzeuger in den Abhitzedampferzeuger eines konventionellen Kombikraftwerks geleitet. Dies steigert die Dampfproduktion und damit die elektrische Leistung bei gleichzeitig relativ niedrigen Zusatzkosten.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Linearer Fresnel-Spiegelkollektor

Linearer Fresnel-Spiegelkollektor

Lineare Fresnel-Spiegelkollektoren sind die Aufnahmetechnologie mit den geringsten Investitionskosten. Die Kosteneinsparungen ergeben sich aus kostengünstigen Planarspiegeln und einem sehr einfachen Nachführungssystem.

Die Breite linearer Fresnel-Spiegelreflektoren kann die von Parabolrinnen problemlos um das Dreifache übersteigen. Die gleiche Energiemenge lässt sich daher mit einem Bruchteil der Absorberröhrenlänge aufnehmen. Die direkte Dampferzeugung (DSG) ermöglicht normalerweise lediglich eine Erzeugung von gesättigtem Dampf mit niedriger Durchflussrate.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Parabolrinnenkraftwerk mit Salzschmelze-Wärmespeicher

Parabolrinnenkraftwerk mit Salzschmelze-Wärmespeicher

Parabolrinnen-Kraftwerke mit Wärmespeicher wurden seit Anfang der 2000er Jahre an mehreren Standorten in Spanien umfassend getestet. Eine Parabolrinne ist eine Art Solarwärmeenergiekollektor. Sie besteht aus einem langen Parabolspiegel mit einer längsseits im Brennpunkt verlaufenden Röhre.

Bei dieser Variante wird ein Teil des als primäre Wärmeträgerflüssigkeit (HTF) eingesetzten Wärmeöls durch einen Wärmetauscher geleitet, in dem die Wärme auf eine in einem Sekundärkreislauf zirkulierende Salzschmelze übertragen wird. Die Wärme wird in einem Heiss-Salzschmelze-Tank gespeichert und kann nach Sonnenuntergang wieder abgegeben werden. Damit lässt sich die Betriebszeit der CSP-Anlage um etwa 6 - 7 Stunden verlängern. Die Betriebstemperatur wird auf ein Wärmeöloptimum von etwa 350 ºC eingestellt und ermöglicht eine Dampferzeugung mit nur geringer Durchflussrate.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Parabolrinnenkraftwerk ohne Wärmespeicher

Parabolrinnenkraftwerk ohne Wärmespeicher

Parabolrinnen ohne Wärmespeicher sind die ausgereifteste Kollektortechnologie und wurden in den späten 80er Jahren umfassend in der Mojave-Wüste (USA) getestet. Eine Parabolrinne ist eine Art Solarwärmeenergiekollektor. Sie besteht aus einem langen Parabolspiegel mit einer längsseits im Brennpunkt verlaufenden Röhre.

In einem Parabolrinnenkraftwerk wird Sonnenlicht von einem Spiegel reflektiert und auf einem Rohr, in dem Wärmeöl als primäre Wärmeträgerflüssigkeit (HTF) zirkuliert, gebündelt. Die optimale Betriebstemperatur des Wärmeöls liegt bei etwa 350 ºC, womit sich Dampf mit geringer Durchflussrate erzeugen lässt. Diese CSP-Anlagen ohne Wärmespeicher können nur in Zeiten hoher Sonneneinstrahlung betrieben werden.

Unsere erfahrenen Serviceingenieure unterstützen Sie bei der Wartung Ihrer rotierenden Geräte, um höchste Niveaus an Verfügbarkeit und Zuverlässigkeit zu gewährleisten.

Zugehörige Dokumente