

Controlador de equipamentos EC 531

www.sulzer.com

Copyright © 2023 Sulzer. Todos os direitos reservados.

Este manual, assim como o software descrito nele, é fornecido sob licença e pode ser usado ou copiado somente de acordo com os termos da referida licença. O conteúdo deste manual é fornecido apenas para uso informativo, está sujeito a modificações sem aviso prévio e não deve ser interpretado como compromisso da Sulzer. A Sulzer não assume responsabilidade nem imputação por quaisquer erros ou imprecisões que possam ocorrer neste manual.

Exceto conforme permitido por tal licença, nenhuma parte desta publicação pode ser reproduzida, armazenada em sistema de recuperação ou transmitida, de qualquer forma ou por qualquer meio, seja eletrônico, mecânico, de gravação ou qualquer outro tipo, sem a prévia autorização por escrito da Sulzer.

Sulzer reserva-se o direito de alterar especificações devido a desenvolvimentos técnicos.

2

1.1 Montagem do controlador

Monte o controlador em um trilho DIN de 35 mm. As dimensões físicas do controlador são: 86 x 160 x 60 mm (3,39 x 6,30 x 2,36 pol.) (A x L x P). Se ele não encaixar com facilidade no trilho, puxe a pequena lingueta no fundo da unidade com uma chave de fenda.

1.2 Faça todas as conexões

Há um total de 48 terminais que podem ser conectados a energia, sensores, chaves, relés e um modem; esses terminais são numerados de 1 a 52, de acordo com a seguinte figura:

AVISO! Assegure-se que **toda a alimentação de energia esteja desconectada** e que **todos** os dispositivos de saída a serem conectados ao controlador também estejam **desconectados** antes de fazer qualquer conexão!

A Tabela 1 mostra todas as conexões aos terminais 1-26 na parte inferior do controlador. O uso da entrada Digital (terminais 3–16) e da entrada Análoga 7 e 8 (terminais 17–20) configuráveis para Vazamento ou Pt100 (estas **não** são entradas 4–20 mA) exibido na tabela é a configuração predefinida. Um modem também deve ser conectado de acordo com a figura 11. Para comunicações, consulte a seção 3.

A Tabela 2 mostra todas as conexões aos terminais 27-51 na parte superior do controlador. O uso dos terminais configuráveis DO 1 a DO 8, AO 1 a AO 2 e AI 1 a AI 6 exibido na tabela é a configuração predefinida. "DO" significa "Saídas Digitais", que são saídas de tensão. "AI 1–8" significa "Entrada análoga 1–8". AI 1–AI 4 são entradas 4–20 mA, por isso nós recomendamos o uso de AI 1 como entrada para o sensor de nível devido a uma resolução mais alta na porta AI 1. AI 5 e AI 6 são entradas de Pt100 ou PTC/dispositivo bimetálico configuráveis (estas **não** são entradas 4–20 mA). AI 7 e AI 8 são entradas de Pt100 ou entradas de Vazamento configuráveis (estas também **não** são entradas 4-20mA). Para comunicações, consulte a seção 3.

A alimentação deve estar ser em CC entre 9 e 34 volts. A Figura 2 mostra como conectar uma dispositivo de detecção de falha de alimentação à entrada Digital 9 (terminal 11) e como conectar uma bateria para uma operação ininterrupta.

Se a bomba é operada a partir de uma transmissão do motor ou conversor de frequência, são necessárias precauções especiais.

O nível alto de ruído elétrico pode alterar as leituras elétricas e, desse modo, comprometer a funcionalidade. Para evitar o ruído elétrico conduzido, sigas as melhores práticas e as recomendações de conformidade eletromagnética do fabricante durante a instalação de conversores de frequência. Use cabos protegidos e um espaçamento de 50 cm entre os cabos de alimentação e sinal. Assegure-se de que os cabos também estão separados uns dos outros nos armários.

Tabela 1: Terminais na parte inferior do controlador da bomba

Configurações de fá- brica	Lógica (NO/NC)	Nome	Term.
Alimentação de tensão, 9–34		V+	1
VCC		V-	2
Nível de transbordamento	NO	Entrada digital ⁱ 1	3
Flutuador de nível alto	NO	Entrada digital ⁱ 2	4
Falha de alimentação	NO	Entrada digital ⁱ 3	5
Modo local	NO	Entrada digital ⁱ 4	6
Protetor do motor da bomba 1	NO	Entrada digital ⁱ 5	7
Bomba 1 em autom	NC	Entrada digital ⁱ 6	8
DESCONECTADO	NO	Entrada digital ⁱ 7	9
Protetor do motor da bomba 2	NO	Entrada digital ⁱ 8	10
Bomba 2 em autom	NC	Entrada digital ⁱ 9	11
DESCONECTADO	NO	Entrada digital ⁱ 10	12
Flutuador de nível baixo	NO	Entrada digital ⁱ 11	13
DESCONECTADO	NO	Entrada digital ⁱ 12	14
DESCONECTADO	NO	Entrada digital ⁱ 13	15
DESCONECTADO	NO	Entrada digital ⁱ 14	16
	Bomba de	Entrada análoga 7	17
Dt100 ()/azamanta	vazamento 1	V-	18
FITOU/ Vazamento	Bomba de	Entrada análoga 8	19
	vazamento 2	V-	20
		V-	22
	Entrada	RXD	23
Porta do modem RS 232	Saída	TXD	24
	Saída	RTS	25
	Entrada	CTS	26

i. "Entrada digital" significa que um sinal está ativo ou inativo (alto ou baixo), onde alto é uma tensão entre 5 e 32 volts CC e baixo é uma tensão inferior a 2 volts. Todas as entradas digitais são configuráveis no menu Configurações > Entradas digitais, mas a configuração mostrada aqui é a padrão.

Figura 1

pt

os terminais de entrada digital podem ser conectados a dispositivos passivos, como interruptores, ou dispositivos ativos que são alimentados e fornecem sinais. Conecte os dispositivos de acordo com a figura

4

Tabela 2: Terminais na parte superior do controlador da bomba

Term.	Nome	Configurações de fá- brica	Lógica (NO/NC)
27	V-		
28	Saída digital ⁱ 1	Alerta de alarme	NC
29	Saída digital ⁱ 2	Ctrl da bomba 1	NO
30	Saída digital ⁱ 3	Ctrl da bomba 2	NO
31	Saída digital ⁱ 4	DESCONECTADO	NO
32	Saída digital ⁱ 5	DESCONECTADO	NO
33	Saída digital ⁱ 6	Alarme de funcionários	NO
34	Saída digital ⁱ 7	Controle misturador	NO
35	Saída digital ⁱ 8	Nível alto	NO
36	Saída análoga ⁱⁱ 1	Nível do poço	
37	Saída análoga ⁱⁱ 2	Vazão de saída do poço	
38	V+		
39	Entrada análoga 1	Sensor de nível	
40	Entrada análoga 2	DESCONECTADO	Entradas
41	Entrada análoga 3	DESCONECTADO	4–20 mA
42	Entrada análoga 4	DESCONECTADO	
43	V-		
44	Entrada análoga 5	Bomba 1, PTC	Pt100 / PTC
45	Entrada análoga 6	Bomba 2, PTC	temperature
47	Ethernet		
49	RS 485 +		
50	RS 485 -		
51	Proteção de RS 485		
52	Desvio e terminação de RS 485	Conectores, consulte a seção 3.	5.2 e a figura 12

 A saída digital é uma saída de tensão. Consulte o menu Configurações > Saídas digitais para informações sobre a configuração.

ii. Saída análoga, consulte Configurações > Saídas análogas para informações sobre a configuração.

Figura 2 a alimentação deve ser em CC entre 9 e 34 volts, mas se também for usada para carregar baterias de 24 V, deve ser de 27,2
 V. Conecte um dispositivo de indicação de falha de alimentação à Entrada digital 9 (terminal 11) de acordo com a figura. Para operação ininterrupta em caso de falha de alimentação, conecte uma bateria de acordo com a figura.

Conexão da entrada análoga 4-20 mA É recomendado o uso da Entrada análoga 1 como Sensor de nível devido a sua resolução mais alta.

Figura 3 conexão de entrada análoga do sensor de nível

Entrada análoga 5-8 para conexão de sensores Pt100 (sensor de temperatura).

Figura 4 conexão para uso de Pt100 V correspondente a V-

Use a Entrada análoga 5–6 para o sensor de temperatura de PTC e/ou dispositivos bimetálicos. No caso de vários sensores de PTC ou dispositivos bimetálicos: conecte os sensores em série.

Figura 5 conexão de Entrada análoga para PTC e/ou dispositivo bimetálico (sensores de temperatura)

Entrada análoga 7-8 para sensor de vazamento. No caso de vários sensores de vazamento: conecte os sensores em paralelo.

Figura 6 conexão de entrada análoga dos sensores de vazamento

Conexões de saída digital. A recomendação é o uso de relés externos em conjunto com um díodo de retorno para cada relé de acordo com a figura.

Figura 7 conexão de saída digital (relé externo)

Conexões de saída análoga. Várias cargas devem ser conectadas em série.

Figura 8 conexão de saída análoga

2 VERIFIQUE SUA INSTALAÇÃO

Após a instalação, é possível verificar o status das entradas e saídas digitais e análogas nos menus de EC 531. Esse procedimento pode ser usado para validações da instalação e para identificação de falhas.

Para verificar as entradas e saídas digitais: Acesse aos menus pressionando a [Seta para baixo]:

Menu principal – Status rápido – Status DI/DO – Enter:

Quick Status:DI/DO Status	Quick Status:DI/DO Status
DI 3 NO 6 NC 9 NO 12 NO	DI 3□N0 6■NC 9□N0 12□N0
1 NO 4 NO 7 NO 10 NO 13 NC	1 NO 4 NO 7 NO 10 NO 13 NC
2□N0 5■N0 8■N0 11■NC 14□N0	2 NO 5 NO 8 NO 11 NC 14 NO
D0 1∎NC 3∎NO 5⊡NO 7⊡NO	D0 1⊡NC 3■N0 5⊡N0 7⊡N0
2□N0 4■N0 6□N0 8□N0	2□N0 4■N0 6□N0 8□N0
Settings	Settings
[Terminal I/O Status]	[Logical I/O Status]
Esc <	Esc ◀♥

Figura 9 status das entradas e saídas digitais

NOTA! Alterne entre o status E/S do terminal e o Status E/S lógico pressionando Enter e seta para cima/ seta para baixo. NO = Normalmente aberto, NC = Normalmente fechado

A diferença entre o status E/S do terminal e o Status E/S lógico em DI/DO é a forma como o EC 531 percebe as entradas como estando ou não ativas no estado normal dependendo do fato de as entradas estarem definidas como Normalmente abertas ou Normalmente fechadas (NO/NC).

Exemplo: A Entrada digital 11 é o Flutuador de nível baixo, e normalmente está sempre ativa (Normalmente fechada) mas o software interpreta essa entrada como não ativa até ser liberada. Isso é exemplificado na figura 9 acima.

Para verificar as entradas e saídas análogas: Acesse aos menus pressionando a [Seta para baixo]:

Quick Statu	us:AI/AO Status	Quick Status:AI/AO Status
AI1	:11.900 mA	
AI2	: 4.500 mA	A01 : 4.000 mA
AI3	: 4.000 mA	A02 : 7.200 mA
AI4	: 0.000 mA	
	-	AI5: PTC/Klixon : -OK-
A01	: 4.000 mA	AI6: Pt100 (Tem : 260.0 °C
A02	: 7.200 mA	AI7: Pt100 (Tem : 50.0 °C
	-	AI8: Leakage : -Tripped-
Esc	4∓	Esc ◀♠

Menu principal – Status rápido – Status Al/AO – Enter:

Figura 10 status das entradas e saídas análogas

NOTA! Use a seta para baixo para descer e visualizar todos os sinais análogos.

3 PORTAS DE COMUNICAÇÃO

O EC 531 tem várias portas de comunicação, listadas abaixo.

3.1 Porta USB (Mini-B)

Esta porta de serviço é muito importante para as conexões temporárias para baixar a configuração e atualizar o firmware usando AquaProg.

Selecione Modbus RTU ou TCP e ID Modbus nas configurações. Está disponível uma tabela de referência.

A primeira vez que um PC é conectado ao EC 531, é exibido um assistente na tela. Siga as instruções em seu PC.

3.2 Porta RS 232 (9-pols D-Sub na parte frontal)

Esta porta de serviço é muito importante para as conexões temporárias para baixar a configuração e atualizar o firmware usando AquaProg.

Selecione Modbus RTU ou TCP e ID Modbus nas configurações. Está disponível uma tabela de referência.

Os parâmetros de comunicação são configuráveis.

3.3 Porta Modem RS 232 (terminais de parafuso 22 – 26)

Esta porta está desenhada para as comunicações do modem e possui o protocolo Modbus RTU ou Modbus TCP. Pode ser usado outro protocolo usando o modem, que converte o sinal.

Predefinições desta porta:

Protocolo: Modbus RTU, Veloc Handshake: Desconectado, ID do

Velocidade de transmissão: 115200, ID do protocolo: 1.

Paridade: Nenhuma, Tempo limite da mensagem: 2 s

Nessa porta existe a possibilidade de alterar as propriedades da velocidade de transmissão (300–115200), ID do protocolo (1–255), ID da estação (1–65535), paridade (nenhuma, ímpar, par) e handshake (conectado/desconectado). Para saber mais informações sobre as configurações, consulte o manual do usuário ou os menus.

Para o conceito AquaWeb é necessário que a ID da estação definida de acordo com a subscrição e a ID do protocolo estejam corretas!

Figura 11 conexões do modem, cabo do modem P/N: 43320588

3.4 Porta Ethernet (Terminal 47)

A porta Ethernet é uma tomada RJ45. Nas configurações, selecione entre endereço IP **estático** ou **dinâmico**. A porta TCO predefinida do Modbus é a 502.

3.5 RS 485 bus (Terminais 49 – 51

Uma rede RS 485 é uma rede de derivação múltipla, o que significa que todas as unidades conectam-se em paralelo ao mesmo cabo. Em uma rede RS 485, cada unidade deve possuir um endereço ou número de ID Modbus único.

3.5.1 Parâmetros de comunicação RS 485

O EC 531 pode atuar como dispositivo principal ou secundário na rede RS 485. Se EC 531 estiver definido como dispositivo principal, todas as unidades circundantes devem ser definidas como secundárias.

Todas as unidades na rede RS 485 devem estar usando os mesmos parâmetros de comunicação; velocidade de transmissão, paridade e bits de parada. Compare a configuração no menu de EC 531 e consulte os manuais das unidades circundantes.

3.5.2 Cabo e terminação RS 485

O cabo RS 485 entre o EC 531 e as unidades circundantes deve ser um cabo duplo torcido e protegido. A interface RS 485 no EC 531 possui isolamento galvanizado em relação aos restantes circuitos. Assim, a proteção do cabo de comunicações RS 485 entre o EC 531 e os dispositivos adjacentes deve estar conectada em ambas extremidades.

Uma regra básica é que a velocidade em bits multiplicada pelo comprimento em metros não deve ser superior a 108. Assim, um cabo de 50 metros não deve emitir um sinal com uma velocidade superior a 2 Mbit/s. Em ambientes com fortes perturbações elétricas, é recomendado manter a velocidade de transmissão em uma velocidade baixa. Nunca divida a linha de comunicações RS 485 em várias linhas. As comunicações devem ir de uma unidade para a unidade seguinte em uma linha claramente definida.

O EC 531 inclui de resistências a desvios para assegurar a estabilidade dos dados mesmo quando as comunicações estão inativas. Consulte os manuais das unidades circundantes no caso de ser necessário um desvio.

O bus RS 485 deve terminar com uma resistência de 120 ohms em ambas extremidades do cabo. O cabo deve ser do tipo duplo, torcido e protegido e todas as proteções na rede RS 485 devem estar conectadas à terra somente em um ponto.

NOTA! O bus RS 485 deve estar terminado em ambas extremidades, mas não entre elas.

Figura 12 desenho do bus RS 485

4 CONFIGURAÇÃO MÍNIMA NECESSÁRIA DE VFD PARA O CONTROLE EC 531

Esta seção descreve somente os requisitos para ativar as comunicações com o dispositivo. Todos os restantes parâmetros para a aplicação e exigências de segurança devem ser definidos de acordo com a documentação do fornecedor real. A velocidade de transmissão e a paridade devem ser as mesmas para todas as unidades no mesmo bus de dados. A ID secundária deve ser exclusiva em cada Modbus secundário conectado.

Tempo limite do Modbus deve ser inferior nos Modbus secundários do que a definição no EC 531 (a predefinição é de dois segundos). O RS 485 <u>deve</u> possuir resistências na terminação em ambas extremidades do cabo (com o conector no terminal na posição 52 no lado do EC 531). A falta de terminação no lado do VFD pode causar falha de comunicação na presença de interferência elétrica externa, por exemplo, quando o motor está em funcionamento.

As tabelas abaixo estão na versão em Inglês.

4.1 ABB

ACQ 810		Variable speed drive
10.01 Ext 1 start func		FBA
21.01 Speed ref 1 sel		EFB ref 1 (P.02.38)
21.04 Neg speed ena	CONST	C.TRUE to enable pump reverse
50.04 FBA ref 1 modesel		Speed
50.15 FBA cw used		P.02.36 EFB main cw
58.01 Protocol ena sel		Modbus RTU
58.03 Node address		Unique slave ID corresponding to EC 531 setting
58.04 Baud rate		Same as EC 531
58.05 Parity		Same as EC 531
58.06 Control profile		ABB enhanced (default)
58.10 Refresh settings		Refresh
16.07 Param. save		Save

ACS 580	Variable speed drive
58.01 Protocol enable	Modbus RTU
58.03 Node address	Unique slave ID corresponding to EC 531 setting
58.04 Baud rate	Same as EC 531
58.05 Parity	Same as EC 531
58.33 Addressing mode	Mode 2 (32 bit)
58.06 Communication control	Refresh setting
20.01 Ext. 1 commands	Embedded fieldbus
28.11 Ext. 1 frequency ref 1	EFB ref 1
96.07 Parameter save manually	Save

ACS 550	Variable speed drive
9902 Applic. macro	1 = ABB standard
9802 Comm prot sel	1 = Std modbus
1001 Ext1 commands	10 = Comm
1103 Ref1 select	8 = Comm
1604 Fault reset sel	8 = Comm If remote drive reset is enabled in EC 531
5302 EFB station ID (Node address)	Unique slave ID corresponding to EC 531 setting
5303 EFB baud rate	Same as EC 531
5304 EFB parity	Same as EC 531
5305 EFB ctrl. profile	0 = ABB Drv Lim

For PSTx the "Poll interval" in controller must be set to 0 second (as fast as possible) to avoid drive trip, this as the PSTx have an internal (not adjustable) fieldbus timeout of 0.1 second, before drive trips and stops the motor.

With this short timeout, only one corrupt Modbus message may trip the drive. Adjust drive setting 19.04 to the safety level required for your application.

PSTx	Soft starter
12.01 Com3 function	Modbus RTU slave
12.02 FB interface connector	Modbus RTU
12.03 Fieldbus control	Off if "Monitor" On if "Control ON/OFF" over fieldbus
12.04 Fieldbus address	Unique slave ID corresponding to EC 531 setting
12.09 FB baud rate*	Same as EC 531 limited to 9600 or 19200
12.10 FB parity	Same as EC 531
12.11 FB stop bits	Same as EC 531
12.12 Fieldbus DI 1	Run status (default)
12.13 Fieldbus DI 2	TOR status (default)
12.14 Fieldbus DI 3	Line (default)
12.15 Fieldbus DI 4	Phase sequence (default)
12.16 Fieldbus DI 5	Start feedback (default)
12.17 Fieldbus DI 6	Stop feedback (default)
12.18 Fieldbus DI 7	Event group 0 status (default)
12.19 Fieldbus DI 8	Event group 1 status (default)
12.20 Fieldbus DI 9	Event group 2 status (default)
12.21 Fieldbus DI 10	Event group 0 status (default)
12.22 Fieldbus Al 1	Phase L1 current
12.23 Fieldbus Al 2	Phase L2 current
12.24 Fieldbus Al 3	Phase L3 current
12.25 Fieldbus Al 4	Motor current
12.26 Fieldbus Al 5	Mains frequency
12.27 Fieldbus Al 6	Mains voltage
12.28 Fieldbus Al 7	Apparent power
12.29 Fieldbus Al 8	Active power

81307146F

PSTx	Soft starter
12.30 Fieldbus Al 9	Power factor
12.31 Fieldbus AI 10	Not used
19.04 Fieldbus failure op.	Consider change to "Stop-automatic" for avoiding manual trip reset in case of intermittent corrupted Modbus messages

4.2 Danfoss - Vacon

FC 200	Variable speed drive
4–10 Motor speed direction	[2] Both directions
8-01 Control site	[2] Ctrl. word only
8-02 Control source	[1] FC port
8-30 Protocol	[2] Modbus RTU
8-31 Address	Unique slave ID corresponding to EC 531 setting
8-32 Baud rate	Same as EC 531
8-33 Parity / Stop bits	Same as EC 531
8-43 PCD Read	
• [02] Configuration	[1612] Motor voltage
• [03] Configuration	[1613] Frequency
• [04] Configuration	[1616] Torque [Nm]
• [05] Configuration	[1617] Speed [RPM]
• [06] Configuration	[1622] Torque %
• [07] Configuration	[1610] Power [kW]
• [08] Configuration	[1614] Motor current

MCD 200 - Com expansão opcional de RS 485.

Adicione um conector do cabo entre os terminais A1-N2.

MCD 500 - Com expansão opcional de RS 485.

Adicione conectores do cabo entre os terminais 17-18 e 18-25. Use uma velocidade de transmissão máxima de 19200.

MCD 200, MCD 500	Soft starter
Protocol	Modbus RTU
Slave ID	Unique slave ID corresponding to EC 531 setting
Baud rate	Same as EC 531. Max 19200 baud.
Parity	Same as EC 531

Vacon 100	Variable speed drive
P5.8.1.1 RS 485 Protocol	1= Modbus RTU
P5.8.3.1.1. Slave address	Unique slave ID corresponding to EC 531 setting
P5.8.3.1.2 Baud rate	Same as EC 531
P5.8.3.1.4 Stop bits	1=1 stop bit
P5.8.3.1.3 Parity type	Same parity as EC 531 ¹
P3.2.1 Rem control place	Select fieldbus CTRL for EC 531 operation
P3.3.1.10 Fieldbus ref sel	Select fieldbus for EC 531 speed control

¹Nota! Marca de paridade em EC 531 que é a mesma de dois bits de parada. Sem paridade na unidade Vacon

Vacon 20	Variable speed drive
P2.1 Remote control place selection	1= Fieldbus
P3.3 Remote freq. reference	3 = Fieldbus
S System parameters	
S-P2.2 Fieldbus protocol	1 = Modbus used
S-P2.3 Slave address	Unique slave ID corresponding to EC 531 setting
S-P2.4 Baud rate	Same as EC 531
S-P2.6 Parity type	Same parity as EC 531 ¹

¹Nota! Marca de paridade em EC 531 que é a mesma de dois bits de parada. Sem paridade na unidade Vacon

4.3 Yaskawa

P 1000	Variable speed drive
H5-01 Drive node address	Same as EC 531
H5-02 Communication speed	Same as EC 531
H5-03 Communication parity	Same as EC 531
b1-01 Frequency reference	[2] for Modbus control
b1-02 Run command	[2] for Modbus control

Selecione "P 1000 > 11 kW" se a corrente (0,01 A) e a alimentação (0,01 kW) estão escaladas para 0,1 A e 0,1 kW.

4.4 CG (Emotron)

A unidade Emotron usa dois bits de parada de série, essa é a mesma da "MARCA" paridade em EC 531. É necessária uma placa de expansão opcional de RS 485.

TSA	Soft starter	
260 Serial com.		
• 261 Com type	Select RS 485	
• 262 Modbus RTU		
∘ 2621 Baud rate	Same as EC 531	
 2622 Address 	Unique slave ID corresponding to EC 531 setting	
• 264 Com fault	Select preferred behaviour	
210 Operation		
215 Action ctrl		146F
∘ 2151 Run / Stp ctrl	Select "Com" for fieldbus control	81307

FDU 2	Variable speed drive
260 Serial com	
• 261 Com type	Select RS 232 / 485
• 262 RS 232 / 485	
∘ 2621 Baud rate	Same as EC 531
2622 Address	Unique slave ID corresponding to EC 531 setting
• 264 Com fault	Select preferred behaviour
210 Operation	
• 214 Ref ctrl	Select "Com" for fieldbus control
• 215 Run/Stp ctrl	Select "Com" for fieldbus control

4.5 Invertek

Os terminais de controle e inibição devem ter alguns conectores para ativar o controle Modbus.

Coloque um cabo entre o terminal um a dois, para ativar o comando de partida, 1–12 e 9–13 para inibição e controle de segurança.

Optidrive	Variable speed drive
P5-01 Drive fieldbus address	Unique slave ID corresponding to EC 531 setting
P5-03 Modbus / BACnet baud rate	Same as EC 531
P5-04 Modbus / BACnet format	Same parity as in EC 531
P1-12 Command source select	4:Fieldbus control

4.6 NFO Drives

Sinus G2	Sinewave variable speed drive
Par group:	
Serial	
• Bustype	Mbus RTU
Address	Unique slave ID corresponding to EC 531 setting
• Si Baud	Same baud rate as EC 531
• Si Prot	Same parity as EC 531 ¹
Control	
Auto	Start OFF

¹ Nota! A marca de paridade em EC 531 é a mesma de 2 bits de parada. Sem paridade na unidade NFO

Ative "Executar entrada" com um conector do cabo entre o terminal 1 e 5 para permitir o controle do Modbus.

4.7 Schneider

ATS 48	Soft starter
COP menu:	
• Add	Unique slave ID corresponding to EC 531 setting
• tbr	Same baud rate as EC 531
• FOr	Same parity as EC 531
• tLP	1.8 if using default EC 531 setting
• PCt	ON to enable new settings with a power reset

Ative com uma reposição da alimentação (DESCONECTAR/CONECTAR). Coloque um conector entre o terminar +24 V e PARADA para permitir o controle do Modbus.

ATV 12	1->3 phase variable speed drive
COnF menu:	
• FULL	
∘ COM-	
• Add	Unique slave ID corresponding to EC 531 setting
• Tbr	Same baud rate as EC 531
• Tfo	Same parity as EC 531
∘ Ctl-	
• Fr 1 = Mdb	Select modbus for control over RS 485 fieldbus

Ative com uma reposição da alimentação (DESCONECTAR/CONECTAR).

ATV 61	Variable speed drive
1.9 COMMUNICATION	
MODBUS NETWORK	
∘ Modbus address	Unique slave ID corresponding to EC 531 setting
∘ Modbus baud rate	Same baud rate as EC 531
∘ Modbus format	Same parity as EC 531
1.6 COMMAND	
• Ref.1 channel = Modbus	Select modbus for control over RS 485 fieldbus

Ative com uma reposição da alimentação (DESCONECTAR/CONECTAR).

ATV 600 series	Variable speed drive
6.1 Comm parameters	
• Modbus SL	
 Modbus fieldbus 	
 Modbus address 	Unique slave ID corresponding to EC 531 setting
 Modbus baud rate 	Same baud rate as EC 531
 Modbus format 	Same parity as EC 531
5.4 Command and refere.	
RefFreq 1 config	
• = Ref. freq modbus	Select modbus for control over RS 485 fieldbus

81307146F

Ative com uma reposição da alimentação (DESCONECTAR/CONECTAR).

4.8 Tabela de funções suportadas

	,						ŝ	,		(uoto	*			,	10			líde.	•			nergy		Gelva22;
Marca:			4 _{BB}	,		0and	O.		Co Co E			?//.	A ^{CC} O ^{CC}	L.	ex.		4	och och			₩			9110
Modelo:	Í				Í			Í		Í	Í	/		Í	Í						Í			
	10	80	20			00	8			ive		NO.			_	~	_	8	8	0	=			
	ACQ 8	ACS 5	ACS 5	PSTx	FC 200	MCD 2	MCD 5	TSA	FDU 2	Optidr	Sinus	100 FL	20	P 1000	ATS 48	ATV 12	ATV 61	ATV 60	PM 51	PM 71	Acuvir	ND10	EM210	
Tipo de unidade:																								
VFD / VSD	Х	Х	Х		Х				Х	Х	Х	Х	Х	Х		Х	Х	Х						
Arrancador suave				x		х	х	x							х									
Medidor de energia																			х	х	x	x	x	
Controle:																								
Controle conectado/ desconectado	x	х	x	x	x	x	x	x	х	x	x	x	х	x	x	x	x	x						
Controle inverso	Х	Х	Х	Х	Х				Х	Х	х	Х	Х	Х		Х	Х	Х						
Controle de velocidade	x	х	х		х				х	x	х	х	х	х		x	х	х						
Monitor:																								
Executar	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х						
Falha	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х						
Frequência Hz	Х	Х	Х		Х				Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	
Velocidade RPM		Х	Х		Х				Х		Х	Х	Х	Х		Х	Х	Х						
Binário %	Х	Х	Х		Х				Х		Х	Х	Х		Х		Х	Х						
Binário Nm					Х				Х															
Tensão do motor	х	х	х		х				х		x	х	х	х		х	х	х						
Corrente do motor	x	х	x	х	х		х	x	х	x	x	х	х	х	x	х	х	х						
Alimentação do motor	x	х	x	х	х		х	x	х	x	x	х	х	х		х	х	х						
Fator de potência				x			х				x				х				х	x	x	х	x	
Fator de potência				х														х	х	x	x	х	x	
Tensão L1																			Х	Х	Х	Х	Х	
Tensão L2																			Х	Х	Х	Х	Х	
Tensão L3																			Х	Х	Х	Х	Х	
Tensão LV média								x											х	х	x	х	x	
Tensão L1–L2								Х											Х	Х	Х	Х	Х	
Tensão L2–L3								X											Х	Х	Х	Х	Х	
Tensão L3–L1								X											Х	Х	X	Х	Х	
L-L Average volt				Х														Х	Х	Х	Х	Х	X	
L1 Corrente A				X			X	X											X	X	X	X	X	
L2 Corrente A				X			X	X						$\left - \right $					X	X	X	X	X	
L3 Corrente A				X			X	X											X	X	X	X	X	
A A																			х	X	X	X		

81307146F

pt

5 DADOS TÉCNICOS DO EC 531

Dados elétricos

Categoria da instalação	CAT II
Consumo de energia	< 5,0 W (sem carga de saída)
Tensão de alimentação	9-34 VCC SELV ou Classe 2

Dados ambientais				
Temperatura ambiente de operação	-20 a +50 °C (-4 a +122 °F)			
Temperatura ambiente de armazena- gem	-30 a +80 °C (-22 a +176 °F)			
Umidade	0 - 95% UR não condensada			
Altitude máxima	2000 m			
Grau de poluição	2			

Dados físicos		
Dimensões	AxLxP: 86 x 160 x 60 mm (3,39 x 6,30 x 2,36 pol.)	
Montagem	Trilho DIN 35 mm (1,378" W)	
Grau de proteção	IP 20, NEMA: Tipo 1	
Velocidade das chamas	UL 94 V-0	
Material da carcaça	PPO e PC	

Portas			
Entradas análogas (Al) mA Re	Número de: Intervalo: sistência de entrada: Resolução:	4 4–20 mA (CC) 136 ohm. Proteção PTC Al1: 15 bits Al2–4: 10 bits	
Entradas análogas (Al) Pt100 Config	Número de: Intervalo: guração da conexão: Resolução: Funções alternativas:	4 menos se forem usadas funções alternativas -20 to +200 °C (-4 to +392 °F) 2 fios 0,1 grau Supervisão de vazamento ou PTC/dispositivo bimetálico, consul- tar abaixo	
Vazamento PTC/Dispositivo bimetálico	Número de: Nível de acion.: Número de: Nível de acion.:	2 (Função alternativa a Pt100) <100 kohm 2 (Função alternativa a Pt100) >3,3 kohm	
Saídas análogas (AO)	Número de: Intervalo: Carga máxima: Resolução:	2 4–20 mA, Origem da fonte de alimentação 500 ohm a 12 V CC, 1100 ohm a 24 V CC 15 bits 0,5 uA)
Entradas digitais (DI) Número de: Resistência de entrada: Tensão de entrada: Velocidade máxima de impulso:		14 Lógica configurável 10 kohm 0–34 V CC, Nível acion. ~ 4 V CC. 1 kHz (canais de impulso)	
Saídas digitais (DO)	Número de: Carga máxima:	8 Lógica configurável. < 34 VDC (Origem da fonte de alimentação.) 1A/saída. A corrente total máxima para as 8 saídas juntas é de 4A Somente coleta, sem vazamento	
Comunicações		1 porta de serviço USB Porta de serviço 1 RS 232 1 porta RS 232 para interface de teleme- tria (modem)	(USB mini-b) (9p D-SUB) (terminal de parafuso)

81307146F

Portas				
	1 RS 485 2 fios (Isolamento galvanizado)	(terminal de parafuso)		
	1 Ethernet	(RJ45)		
Interface do usuário	Tela TFT colorida de 2,2", Tela frontal animada e menus para configurações e status, 6 bo- tões para manobra de menus, 4 botões para manobra da bomba Alarme, LEDs de Alimentação conectada e Indicação do modo da bomba			
Aprovações	CE ®:			

5.1 Limpeza

Como limpar a unidade

Desconecte a unidade. Somente deve ser limpa a parte exterior/frontal usando um pano seco e macio.

Os panos de microfibra são uma boa escolha. Limpe de um modo geral a parte frontal do EC 531 de modo a não riscar a cobertura. Se o pano seco não remover totalmente a sujeira, não faça mais força para tentar retirar a sujeira. Se necessário, umedeça o pano acrescentado uma pequena quantidade de água com uma solução de detergente suave e tente novamente. Nunca use detergente com polimento ou solvente que podem ter impacto na superfície de plástico.

Sulzer Pump Solutions Ireland Ltd., Clonard Road, Wexford, Ireland Tel. +353 53 91 63 200, www.sulzer.com