ME 250-350 High Pressure Stage Casing Pump

The pump characterized in this EPD is inherently configurable. Configuration and efficiency depends on customer specification. The data given below are illustrative and only valid for the defined parameters (see chapter “Life cycle, coverage, assumptions, and exclusions”).

Main applications:
Power generation, i.e. boiler feed in fossil fired power stations.

Type:
Horizontal, radially split, centerline mounted, multistage ring section pump. Pump configured according to customer requirements.

Rated power:
10,700 kW

Manufacturer:
Sulzer Pumpen (Deutschland) GmbH, Germany

CPC classification:
43220

Key economic and environmental advantages

• High availability of more than 98%
• Life-time of 30 years
• High efficiency of the pump means lower energy consumption and emissions
• Frequency inverter allows flexible and energy-efficient adaptation to the effective power used
• Comprehensive training and professional service enable customers to operate the pump cost and energy-efficiently
• Retrofit service to re-establish the best efficiency point if operating conditions change
• Simple to dismantle, well suited for recycling due to high quantity of high alloyed steels (>95% by weight) that easily can be separated: metal parts are marked to identify composition.

Key economic and environmental indicators over life-cycle of 30 years

Costs
€ 213 000 000

- Procurement / manufacturing 0.6%
- Usage: electricity 99.1%
- Usage: service 0.3%

Energy consumption
19 400 000 GJ-Eq
1 812 GJ-Eq / kW

- Procurement 0.004%
- Manufacturing 0.001%
- Usage 99.99%

CO₂ emissions
899 725 tons CO₂-Eq
84 tons CO₂-Eq / kW

- Procurement 0.004%
- Manufacturing <0.001%
- Usage 99.99%

Weight & composition
12 575 kg
1.18 kg / kW

- Cast iron 33.0%
- Alloyed / high alloyed steel 62.0%
- Oil 4.0%
- Others 1%

1) e.g. varnishes, seals
Functional unit
The functional unit is 1 kW of rated hydraulic power at optimum efficiency.

Composition of the product
The pump consists of 62% alloyed and high alloyed steels and 33% cast iron.

The indicated quantity of oil refers to the initial fill of the pump, the oil is replaced every second year after installation.

Remaining components such as paints and seals amount to less than 1% of the total weight and have as such been omitted.

Material consumption during life cycle per pump (material balance sheet)

<table>
<thead>
<tr>
<th>Material</th>
<th>Procurement 2)</th>
<th>Manufacturing at Sulzer</th>
<th>Usage / end of life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kg / kW</td>
<td>kg</td>
</tr>
<tr>
<td>Cast iron</td>
<td>4 200</td>
<td>0.39</td>
<td>12 500</td>
</tr>
<tr>
<td>Steel (high alloyed)</td>
<td>7 795</td>
<td>0.73</td>
<td>8 200</td>
</tr>
<tr>
<td>Oil</td>
<td>480</td>
<td>0.04</td>
<td>8 200</td>
</tr>
<tr>
<td>Parts not included 2)</td>
<td><100</td>
<td><0.01</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total</td>
<td>12 575</td>
<td>1.18</td>
<td>12 000</td>
</tr>
</tbody>
</table>

1) By weight. 2) Weight not included in assessment. 3) Rated power.

Material consumption during life cycle (primarily from usage / end of life)

<table>
<thead>
<tr>
<th>Procurement 2)</th>
<th>Manufacturing at Sulzer</th>
<th>Usage / end of life 3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJ-Eq</td>
<td>GJ-Eq/kW</td>
<td>GJ-Eq</td>
<td>GJ-Eq</td>
</tr>
<tr>
<td>Electricity</td>
<td>94.6</td>
<td>0.009</td>
<td>19 383 797</td>
</tr>
<tr>
<td>Gases 1)</td>
<td>7.0</td>
<td><0.001</td>
<td>0</td>
</tr>
<tr>
<td>Fuel oils</td>
<td>32.6</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>Materials</td>
<td>1 329</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>Transports</td>
<td>14.3</td>
<td>0.001</td>
<td>0.0031</td>
</tr>
<tr>
<td>Disposal, waste water 7)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.4</td>
</tr>
<tr>
<td>Non-renewable energy sources 4)</td>
<td>1 367</td>
<td>0.128</td>
<td>33.3</td>
</tr>
<tr>
<td>Total renewable energies 4) 6)</td>
<td>111</td>
<td>0.010</td>
<td>0.5</td>
</tr>
<tr>
<td>Total energy sources 5)</td>
<td>1 477</td>
<td>0.138</td>
<td>33.8</td>
</tr>
</tbody>
</table>

1) Natural gas, butane, propane. 2) Including transportation to Sulzer (<1%). 3) Including transportation to customer (<1%). 4) Hydro power, solar power, wind power, biomass. 5) Including waste and waste water treatment. 6) Fully allocated to procurement. 7) Including credit from recycling of pump at end of life-time.

Primary energy consumption during life cycle

The pump is used in Europe, so the European energy mix was applied (UCTE mix).
Emissions during life cycle (primarily from usage / end of life)

<table>
<thead>
<tr>
<th></th>
<th>Procurement</th>
<th>Manufacturing at Sulzer</th>
<th>Usage / end of life 1)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>kg / kW</td>
<td>t</td>
<td>kg / kW</td>
</tr>
<tr>
<td>Greenhouse Gas Potential (CO₂-equivalents)</td>
<td>43.4</td>
<td>4.05</td>
<td>2.22</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification potential (SOx-equivalents - AP)</td>
<td>3.5</td>
<td>0.32</td>
<td>0.10</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosmog potential (ethylene equivalents)</td>
<td>0.008</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Ozone depleting potential (CFC11-equivalents) 2)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Oxygen Demand (O₂-equivalents)</td>
<td>0.09</td>
<td>0.009</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

n.a.: not available, kW related to 10 700 kW rated power. 1) Emissions are dominated by emissions in usage caused by electricity consumption. 2) Ozone depleting substances are not in use at the manufacturing site. 3) No related substances used in production.

Life-cycle – coverage, assumptions, and exclusions

System boundary: The EPD covers all relevant environmental aspects in relation to the life cycle phase diagram below.

The construction of buildings, production machinery and transport infrastructure are all excluded.

Manufacturing and usage of the motor, frequency inverter, and the piping used to operate the pump are excluded from the functional unit.

Procurement includes the extraction of raw materials and production of semi-finished products, consumables, and energy by suppliers. Production data were converted into environmental effects via factors from the EcoInvent Database; based on the component parts for this product as assembled by Sulzer.

The consideration of externally sourced parts has been limited to the casing, baseplate, shaft, impeller, motor, gearbox, and bearings; which together account for over 99% of the product weight.

Due to low masses or rates of usage, small components such as solvents, varnishes and plastics (for e.g. seals) have not been included.

Manufacturing at Sulzer covers all product manufacturing activities undertaken at the manufacturing site including engineering, welding, grinding, machining, painting and assembly. Data used are drawn from the yearly Sulzer SEED data collection which includes energy (e.g. electricity, natural gas, butane, propane, fuel oils, district heating, coal and coke etc.) water consumptions and waste water, emissions to air and waste production. The energy used includes both manufacturing and on-site office activities. The emissions to air from the use of paints and solvents are included, however related consumption of the varnishes and paints are excluded. The environmental burden from waste and wastewater treatment has been calculated using factors from the EcoInvent Database.

The pump is assembled in Germany, and the mean European Union emissions factor for the electricity generating mix has been applied.

The packaging of the pump for transport to the customer is a wooden crate, which has been included.

Usage / end of life includes the usage and servicing of the product. It includes the production and disposal of spare parts and of oil.

The motor and frequency inverter are not part of the system. The electricity consumption of the pump has therefore been calculated assuming an efficiency of both to 100%.

The pump is used in Europe, the European energy (UCTE) mix was assumed. The price for electricity applied is € 0.10.

The yearly costs for maintenance are set at 2% of the purchase price of the pump, and the assumed average increase in prices is at 2% per year.

4% of the total weight of the pump is typically replaced during the lifetime and includes bearings, seals, impeller, and wearing rings.

For recycling purposes, a credit of 50% of the initial materials burden to produce the pump has been assumed.

Costs and effects of dismantling are not considered and are assumed minor compared with the usage phase. Monetary benefits through selling the pump as scrap have not been considered, as the lifetime of the product is too long to make a robust estimate).

Spent oil is disposed as hazardous waste and incinerated accordingly; its environmental effects have been calculated based on factors from the EcoInvent Database.

Transportation to Sulzer (depending on the location of the supplier, variously by truck, train, ship or airplane) is included in the procurement phase. Transportation to the customer following the manufacturing phase is by truck, and transportation for service activities in usage is by van for service at the customer site, or by truck if the pump is serviced at Sulzer’s site. Transportation of the dismantled pump at the end of its working life is not considered.

Allocation: For manufacturing, data collected on the annual consumption of energy and water, emissions to air, waste water and waste production (from SEED) have been divided by the total number of pumps produced by the site to estimate the resource consumption per pump. For procurement and usage all resources, emissions, and wastes have been fully allocated to the pump.

Referenced period for underlying data: Data taken from the Sulzer SEED database and EcoInvent database origin from the year 2009.
Applied load levels of pump during life cycle

The applied load levels are summarized in the table below. The pump is operated in three sequential load level phases that differ in duration, yearly operating hours, efficiency, and power consumption. A frequency inverter drive allows a flexible and energy efficient adaptation to the effective power used. The total life-time of a pump is specified by the customer, the distribution of operational load levels across the three categories is based on expert knowledge at Sulzer Pumps.

<table>
<thead>
<tr>
<th>Phases of load level</th>
<th>Duration of phase</th>
<th>Operating hours per year</th>
<th>Efficiency η</th>
<th>Power consumption kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1: full load</td>
<td>15 years</td>
<td>8 000 hours / year</td>
<td>85%</td>
<td>10 700</td>
</tr>
<tr>
<td>Phase 2: middle load</td>
<td>10 years</td>
<td>6 000 hours / year</td>
<td>82%</td>
<td>5 910</td>
</tr>
<tr>
<td>Phase 3: low load</td>
<td>5 years</td>
<td>4 000 hours / year</td>
<td>84.5%</td>
<td>4 000</td>
</tr>
</tbody>
</table>

Glossary

Life cycle assessment, LCA is a management tool for appraising and quantifying the total environment impact of products or activities during the entire life cycle.

Life cycle costs are based on LCAs and cover the total costs of a product during the entire life cycle from the extraction of resources to the disposal of the product.

A Functional Unit is a concept that is used to compare the life cycle costs of different products on a like-for-like basis.

CPC (Central Product Classification) is a UN-based scheme for statistical division of product categories and service types.

EcoInvent Database contains international industrial life cycle inventory data.

Acidification occurs through deposition of soluble sulphur and nitrogen compounds from agricultural and combustion processes. Acidification can be harmful to sensitive ecosystems.

Eutrophication is the often anthropogenic enrichment of bodies of water by nitrates and phosphates. This increases the growth of aquatic plants that deoxygenate water and outcompete other aquatic life.

Global warming potential, GWP is the potency of 1 kg of a gas as a radiative forcing agent relative to an emission of 1 kg of carbon dioxide over 100 years.

Ozone depletion potential, ODPs are calculated as the change that would result from the emission of 1 kg of a substance compared to that from the emission of 1 kg of CFC-11 (trichlorofluoromethane).

Photochemical ozone creation potential, POCP refers to the change in of ground level ozone concentration potentially caused by the emission of 1 kg of a gas compared to that from the emission of 1 kg of ethene.

SEED is the database that Sulzer uses to collect, validate, and report on social, economic, and ecological data.

Sulzer Pumps

Sulzer Pumps is a world leader in reliable products and innovative pumping solutions. The global network of modern manufacturing and packaging facilities together with sales offices, service centres and representatives located close to major markets provide fast responses to customer needs.

Sulzer Pumps has a long history of providing innovative pumping solutions to business partners in the following industries: Oil and Gas, Hydrocarbon Processing, Pulp and Paper, Power Generation, General Industry, Chemical Process Industry, Water and Wastewater.

All manufacturing sites operate business man-agement systems certified to ISO 9001, ISO 14001, and OHSAS 18001.

Sustainability program of Sulzer

Sustainability is a key factor for the success of Sulzer. The company is committed to creating long term economic value, while proactively assuming its social and environmental responsibility. Sulzer continuously assesses its sustainability activities. Extensive programs have been initiated to meet the expectations of Sulzer’s stakeholders.

Applied standards and limitations

The document was prepared based on the EPD General Program Instructions, the PCR for pumps for liquids, liquid elevators and mixers (4322), and the ISO 14025:2010 standard.

Environmental product declarations from different programs with different product category rules may not be comparable.

Verification

The EPD has been externally verified by Atkins Ltd, United Kingdom. The verification was undertaken in two sections; a review of the relevant documentation followed by a review of underlying data using a combination of a desk based review, a site visit and information exchange with Sulzer. This EPD has been verified against the updated PCR for Pumps for Liquids; Liquid Elevators and Mixers (CPC Class 4322), valid until 2014-12-05.

References

Product Category Rule (PCR), CPC Class 4322, Pumps for Liquids; Liquid Elevators and Mixers, PCR 2011:22, Version 1.0, 2011-12-05

Swiss Centre for Life Cycle Inventories, EcoInvent Database 2.1, St. Gallen, 2009

The International EPD Cooperation, EPD General Instructions for Environmental Product Declaration, EPD Version 1.0; 2008-02-29.

Further information about products of Sulzer Pumps can be found at: www.sulzerpumps.com/products
This and other EPDs are available online at: www.sulzer.com/sustainability.
Further information about Sulzer: www.sulzer.com
Further information about the Sulzer sustainability program: www.sulzer.com/sustainability

Disclaimer

The EPD has been prepared to the best of Sulzer Ltd’s knowledge. However, the data, figures and results are shown for illustration purposes only and Sulzer Ltd cannot assume any liability as to the quality of such data, figures and results. Any warranty or representation, whether express or implied, shall be excluded.

The EPD is published by Sulzer Ltd, Corporate QESH, 8401 Winterthur, Switzerland, © July 02, 2012. For questions and feedback please contact sustainability@sulzer.com.

This EPD is valid until: 01-08-2015
Date: 01-08-2012 Version: 0.2